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In assessing the biological response to Sl_ace radiation, two of the most important modify-
ing factors are dose protraction and dose distribution to the body. Studies are reported in

which sheep and swine were used to compare the hematology and lethality response resulting from
radiation exposure encountered in a variety of forms, including acute (high dose-rate), chronic

(low dose-rate), combinations of acute and chronic, and whether received as a continuous or as
fractionated exposure. While sheep and swine are basically similar in response to acute radia-

tion, their sensitivity to chronic irradiation is markedly different. Sheep remain relatively
sensitive as the radiation exposure is protracted while swine are more resistant and capable
of surviving extremely large doses of chronic irradiation. This response to chronic irradiation
correlated well with changes in radiosensitivity and recovery following an acute, sublethal ex-
posure. Swine recover remarkably fast and develop a large and persistant radioresistance. The
change in radiosensitlvity of sheep after either acute or chronic sublethal exposure is basical-

ly the same, consisting of a triphasic pattern of an initial slow recovery, transient radio-
resistance and regression into a long-lasting period of relative radiosensitivity. The over-
all effect of receiving both acute and chronic exposures within a short period of time may de-

pend upon the sequence of the exposures. In addition to protraction, spatial or body distri-
bution is a significant factor in the response of large animals to radiation exposure.

Somatic effects of radiation are gener-
ally categorized into the familiar classi-
fication of early and late effects as
utilized for terrestrial forms of radia-

tion (1). However, space radiation exposure

takes on added dimensions and complexities
not normally found in conventional earth

exposures that makes dose-response esti-
mations most difficult. Certain sources

of radiation are predictable with a fair

degree of certainty while others are quite
unpredictable. The predictable or
"expected" sources include the earth's
trapped radiation belts, galactic cosmic

radiation, and radiation from nuclear
power systems. In the category of the
unpredictable are such events as solar
flares, excessive exposure to the nuclear

reactor in emergency repair or during
rendezvous procedures, and the inadvertent
or uncontrollable orbiting of a spacecraft
in the earth's radiation belts. While the

probability of an unpredictable exposure
may be minimal for a short lunar mission,
it nevertheless must be considered possible,
and perhaps even probable, if the missions
increase in duration and frequency.

Exposure to radiation on a space mission
will likely be in the form of a more-or-

less constant, low-level background of
30-50 mrads per day from galactic radiation,

wlth moderate to high-intensity exposures
occuring during transit through the earth's
trapped radiation belts or from periodic,
and largely unpredictable, solar-flares.
Although solar flares are generally brief,

and of low intensity, they may range up

to a few days with peak dose-rates, of

10-20 rads per hour at the average depth
of the bone marrow (2). Thus an intense

solar flare lasting a day or two or several

smaller flares could result in an exposure
of several hundred rads to the space crew.
In such a case, acute manifestations such
as skin desquamation, prodromal responses,

hematological depression and perhaps even
lethality could result with disasterous
consequences.

For space operations, certainly two of

the most important factors that can modify
the dose-response relationship are dose-
protraction and nonuniform dose distribu-
tion to the body. The studies that we will

report involved the use of large animals
to explore these factors, especially as

they relate to hematological depression
and lethality from radiation exposure. We
will employ the term "acute exposure" to
refer to exposure at a high dose-rate,
e.g., 450 R/hour. "Chronic exposure" will

refer only to a continuous exposure at a
low dose-rate. "Protraction" of an expo-
sure is the process by which a total
radiation dose is given over a longer time

period. This could be accomplished by
chronic exposure or by fractionatlon into
two or more doses separated in time.

Both methods of dose protraction were

used in these studies. Chronic exposure
was studied with animals continuously
exposed until death or by terminating the
exposure after selected doses for LD50
determinations. Using the fractionated

method experiments were conducted to
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determine t h e  e f f e c t s  o f :  a )  f r a c t i o n a t i n g  
a c u t e  exposures  us ing  va r ious  t i m e  i n t e r -  
v a l s ,  b )  ch ron ic  exposure fol lowed immedi- 
a t e l y  o r  a f t e r  va r ious  time pe r iods  b y  
a c u t e  exposures ,  and c )  a c u t e  exposure 
fol lowed immediately by chronic  exposures .  
F igu re  1 i l l u s t r a t e s  t h e s e  va r ious  
exposure s i t u a t i o n s .  

This  program was conducted a t  t h e  Naval 
Rad io log ica l  Defense Laboratory wi th  
funding provided by t h e  Defense Atomic 
Support  Agency and Of f i ce  o f  C i v i l  Defense. 
Unfor tuna te ly ,  a couple  of  t h e  experiments  
were concluded prematurely due t o  t h e  
u n a n t i c i p a t e d  c l o s u r e  of  t h e  l a b o r a t o r y .  
S ince  t h e  animal  management p r a c t i c e s ,  
dosimetry techniques ,  i r r a d i a t i o n  proce- 
dures  and exper imenta l  des ign ,  have been 
p rev ious ly  r e p o r t e d  (3 ,4 )  only h i g h l i g h t s  
o f  t h e  methodology w i l l  be r epea ted  h e r e .  
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METHODS AND MATERIALS 

ANIMALS 

Sheep and swine were t h e  main s p e c i e s  
used i n  t h e s e  s t u d i e s .  They were s e l e c t e d  
on t h e  b a s i s  of t h e i r  be ing  more l i k e  man 
than  r o d e n t s  i n  body s i z e ,  depth-dose 
d i s t r i b u t i o n ,  b a s i c  ( o r  a c u t e )  r ad iosens i -  
t i v i t y ,  metabol ic  ra te ,  and l i f e s p a n .  
Another impor tan t  c o n s i d e r a t i o n  was our  
a b i l i t y  t o  o b t a i n  them i n  l a r g e  numbers, 
h e a l t h y  and uniform i n  s i z e  and age ,  f o r  
t h e  e n t i r e  pe r iod  of t h e  s tudy.  

The sheep were obta ined  a t  one yea r  of 
age from a s i n g l e  source  l o c a t e d  i n  t h e  
Sacramento Val ley of  C a l i f o r n i a .  They were 
cas t ra ted-males  of Columbia-Rambouillet 
c ross -breed ,  weighed 35-45 kg, and 
measured 23-30 cm i n  width a t  t h e  abdomen 
a t  t h e  time they were p l aced  on experiment.  

Except f o r  t h e  f i n a l  few l o t s ,  swine were 
a l s o  ob ta ined  from a s i n g l e  l o c a l  sou rce ,  
wi th  an  a t t empt  be ing  made t o  reduce  b i o -  
l o g i c a l  v a r i a b i l i t y  by a planned breeding ,  

s e l e c t i o n ,  and environmental  c o n t r o l  pro- 
gram. The swine were 8-12 month o l d ,  
female,  pure  bred  Durocs weighing approxi-  
mately 90-110 kg a t  t h e  t i m e  of i r r a d i a t i o n .  

RADIATION SOURCES AND EXPOSURE METHODS 

Two types  of r a d i a t i o n  were used,  coba l t -  
60 gamma and 1 Mvp X-rays. The cobal t -60 
exposures were made a t  t h e  NRDL Rad ia t ion  
Range, Camp Parks ,  C a l i f o r n i a  whi le  t h e  
X-ray exposures  were made wi th  a GE 
Resotron, ope ra t ed  a t  1 0 0 0  KVp/3mA, pro- 
ducing X-rays having a HVL of 2 . 2  mm l e a d  
and an  e f f e c t i v e  energy of approximately 
300 Kev. 

Fo r  t h e  a c u t e  (h igh  dose - ra t e )  exposures  
the  b i l a t e r a l  method of i r r a d i a t i o n  was 
used. For  chronic  (low dose - ra t e )  irradi- 
a t i o n ,  exposures  were cont inuous f o r  
per iods  of up t o  60 days.  S ince  conf ine-  
ment i n  exposure bcxe: for such long  
per iods  was ne i t .her  p r a c t i c a l  nor  humane, 
t he  sheep were exposed i n  i n d i v i d u a l  pens ,  
4 X 8 f e e t  i n  s i z e ,  s i t u a t e d  on a . g e n t l y  
s l o p i n g  h i l l s i d e ,  a s  s chemat i ca l ly  i l l u s -  
t r a t e d  i n  F igure  2 .  T h i s  f a c i l i t y  per-  
m i t t e d  t h e  exposure of a l a r g e  group of 
animals  (up t o  50)  a t  t h e  same t ime and 
same dose r a t e .  I n  t h i s  c o n f i g u r a t i o n  
"uniform" whole-body exposure was dependent 
upon t h e  an ima l s '  random movement i n  t h e  
pens s i n c e  a t  any g iven  t ime t h e  exposure 
was u n i d i r e c t i o n a l  r a t h e r  t h a n  b i l a t e r a l .  
Food and water  was provided on both  s i d e s  
of t h e  pen t o  encourage t u r n i n g  of t h e  
animals  d u r i n g  t h e  exposure.  Lithium 
f l o u r i d e  dos imeters  secured  t o  each s ide  
of groups of  sheep i n d i c a t e d  tha t  t he  
an ima l ' s  movement r e s u l t e d  i n  equa l  
exposure t o  both s ides  du r ing  t h e  exposure 
p e r i o d .  Thus, bo th  methods of exposure 
were e f f e c t i v e l y  b i l a t e r a l .  T i m e  r e q u i r e d  
f o r  s e r v i c i n g  t h e  pens averaged one t o  two 
hours  every two days .  

I.- 
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DATA ANALYSIS

The method used to determine the median

lethal doses (LDS0's) and other parameters

of mortality response was by probit
analysis of the percent mortality on the

natural logarithm of the radiation exposure.
Dosimetric measurements were made with

Landsverk, Victoreen and Phillips ioniza-
tion chambers which were cross-calibrated

with a National Bureau of Standards-
calibrated Vlctoreen R-chamber. In addi-

tion thermolumlnescent dosimetry (LIP)
was used. The dose-rate was measured in

air at the approximate midline of the

exposure box or pen. The midline tissue
dose, at maximum body diameter, was about
65_ of the midline air dose for cobalt-60
and 60_ for 1 Mvp X-ray. The radiation

units expressed throughout this paper
will be in Roentgens as measured in air.

RESULTS

DOSE PROTRACTION

Protraction of a given radiation dose can
be attained mainly by two methods: a) by
chronic exposure, i.e., lowering the dose-

rate and continuously exposing the animals
for a longer period of time, and b) frac-
tionating or dividing the dose into two
or more fractions with radiation-free

time between exposures. Both methods
were used in these studies.

A. CHRONIC EXPOSURES:

1. Terminated Exposures:

Studies to assess the effect of

decreasing dose rate on dose-response
(lethality) by terminating the ex-

posures after giving predetermined
doses were conducted with both sheep
and swine. Table !prcsents the data
while Figure 3 shows the correlation
between the dose rates used and the

LDS0's that were obtained.
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TABLE I

EFFECT OF RAOIATION INTENSITY ON LD50 OF SHEEP AND SWINE

DOSE RATE LDso/60 OURATION OF LDS0

SPECIES (R/HOUR) (ROENTGENS) EXPOSURE (HOURS)

SHEEP

660 237 (215-257) O._

_50" 252 (233"276) 0.6

;50" 316 (297"335) 0.7

261 318 (291-$_3) 1.2

30 338 (313-369) 11.3

3.6 _95 (_50-558) 137.5

2.0 6}7 (555-698) $18.5

SWINE

651 381 (3_1"423) 0.6

370" 399 (371-k2M 0.7

275 SOO 1.8

30 8kg (752-938) 28.3

k 34_ (2259->S000) 861.0

Exposures were to cobalt-60 Eamma or I Mvp X-rays*

Sheep: $S-_5KG, yearling, castrated-male, rolumble-Ramboulllet

Swine: 100-115 KG, 8-9 month Durocs; (NROL -_ ; U.T.- 9 _nd d)

Details of above LDSO studies can be found In references 3-8

In the sheep study the LD50's were
determined within a short period of
time, using sheep randomly selected

from the same lots with the exception
of the second LD50 at 450 R/hour, viz.,
316 R. The LD50 of 316 R was deter-

mined a number of months later using
sheep that appeared physically similar
but from different lot_. They had a

slightly higher LD50 than was found
previously at the same dose rate.

The results of a swine study con-
ducted by Brown and Cragle (6) at the

University of Tennessee Agricultural
Research Laboratory are included in
Figure 3 for comparative purposes.
Those data correlate quite well with
the NRDL data. It can be seen that
swine show a considerable increase in

LDS0 as the dose rate is decreased
below 600 R/hour. In contrast such a

dramatic change in dose effectiveness
does not occur with sheep until the
dose rate has dropped below 30 R/hour.

When we consider the LD50 as a func-
tion of exposure-time (figure 4) the

difference between sheep and swine are
perhaps even more evident. As the
exposure time is increased from 1/2

hour to 12 hours with sheep, the in-
crease in LD50 is slight, perhaps 15-
20%. Based upon the curve through the
data points, protracting the exposure
to 48 and 96 hours results in no more

than 50 and 100% increase in the LD50.

624



40oc

300c

2000

1900

Z800

1700

1600

150C

140C

130o

1200

_1100

o
i000

9o0

8O0

?oc

60c

50c

_00 ,_

300 ,.JL

2O0

100

./
/

/ /

•i .5 1,0 5 0 i0 5 100 500 i000
EXPOSUBE TIME (HOURS)

Figure h. Cc_parisou of radiose_itlvity (LDSO) of sheep and swine
as related to exp_e-timeo

7000

6000

5000

4000

300C

2000

1400

_ ,_oo_

I000 t% Survival

, ' ' '''"I ' ' ''''"I ' ' ''''"I ' ' '

400

Sheep

200

0
I 4 I0 30 60 I00 600 IO00 ,3000

DOSE RATE (R/hour)

FiXate 5. Percent effect dose ss related to dose-rete of the exposure.

BOO

600

400

200

0

The effect of similar protraction

with swine is much greater. When the

exposure time is lengthened to 12, 48

and 96 hours, there is an increase in

_m 3uuM "the LD50 of I_, 100% and about _

Protraction of the exposure to 2 weeks

results in a 4-5 fold increase in the

LDS0 of swine compared to 1-2 fold

increase in sheep.

In Figure 5 the percent survival has

been plotted as a function of the log

of the dose rate. For sheep, the dif-

ference between i0 and 90% survival

doses for dose rates of 30 R/hour and

above was relatively constant amounting

to no more than about 200 R. At 4 and

2 R/hour, the spread has doubled with

a difference of 400 R. For swine the

splaying out of effect curves is not

obvious at 30 R/hour whereas at

4 R/hour the heterogeneity in response

is enormous with well over I000 R

spread between the i0 and 90% effect

doses.

2. Continuous Exposure Until Death:

These studies (9) were undertaken to

determine the adaptability of a large

animal to a continuous exposure at a

low dose-rate, as indicated by the

survival time and changes in the periph

eral blood counts. The median time to

death for sheep exposed continuously

to cobalt-60 gamma radiation at a rate

of 1.96 R/hour was 43 days. The first

dgath occurred on day 25 after an accum-

ulation of Ii00 R; thereafter the deaths

were sporadic in appearance, with no

one period where a large number died.

The last death was on the 60th day,

after an accumulation of about 2760 R.

The accumulated mortality is shown in

Figure 6. Also included in this figure

is the dose-response curve for sheep

exposed at 2R/hour to predetermined

doses. It is quite evident from the

dose response curves _hat the dose re-

quired for a given effect is consider-

ably less for terminated exposures, with

a much greater slope to the curve.

The changes that occur in the periph-

eral blood cell counts are a fairly

reliable indication of the injury sus-

tained by the hematopoietic tissue

following radiation exposure. In these

animals, there was an almost immediate

depression of the white cell count,

reaching significant proportions by

day 4 or after an exposure of 180 R.

This early change can be attributed

primarily to a decrease in the circu-

lating mononuclear ceils, for the

granulocyte cells remained within the

normal range for about 18 days. There

is a suggestion of an abortive rise

around 12-14 days. By the 25th day,

both the mononuclear and granulocytic

cells reached an average of I000 or

iess and it was at this point that

deaths began to occur. The pattern or
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changes in the mononuclear and granulo-
cytic cells is shown in Figure 7. It
is most evident that sheep are unable
to adapt to radiation exposures con-

tinuously given at a rate of 2 R/hour.
For comparative purposes, a group of

sheep were exposed to 50, I00 or 175 R
at a similar dose-rate, 1.9 R/hour,

with leukocyte counts made at compara-
ble time periods. Exposure times for
these animals were approximately i, 2

and 4 days. The results obtained
again showed an early decrease in the
leukocyte counts, reasonably correlated
wlth the total dose. However, since

the exposures were terminated before
reaching lethal levels of injury a
return to nearly normal occurred by
the end of the third week. These

studies demonstrated the significant
effectiveness of low dose-rate exposure
on the hematopoietic system of sheep
(lO),
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B. FRACTIONATED EXPOSURES:

The effect of fractionation on dose

response was studied using three dif-
ferent sets of conditions: a) acute

exposures separated by various time
intervals, b) chronic exposure followed
by acute exposures at various time
intervals and c) acute exposure followed

immediately by a chronic exposure. In
keeping wlth terminology used extensively
in the literature we will refer to the

first or initial exposure as the con-

ditioning dose.

i. Acute Exposures:

In this series, large groups of sheep
and swine were acutely exposed to a

conditioning dose of 2/3rds of their
acute single-dose LD50, i.e. 177 R
for sheep and 265 R for swine. The

acute LD50 was determined on subgroups
of the conditioned animals at various
time intervals thereafter. The re-

sults are presented in Table II and
Figure 8. Immediately after the con-

ditioning exposure (zero-time) the
LD50 plus the initial dose is equiva-
lent to the single-dose LD50. When
the conditioned sheep were allowed to

wait for 7 or ll days before re-expo-
sure, there was little change in the
LD50 from that found at zero-tlme.
However, by 16 and 20 days the LD50's
were greater than that of the controls

indicating an induced-radioresistance.
This resistance was quite transient,
and by the 24th day the animals had

reverted to a sensitive stage again,

remaining that way at least through
the 75th day after conditioning (ll).

In contrast to the slow change in
radiosensltivlty with time found in
the sheep study, the change for swine

_d, such that by the seventh day
the LD50 was approximately the same as
that of the controls. An even greater
radioresistance was found with swine

in that by the 16th day, the LD50 was
about 165% of controls. The induced-
radioreslstance was still evident at

61 and 107 days (8).

In a smaller study (5), sheep were
conditioned with 100 R at 450 R/hour

and LD50's determined at 7 and 16 days.

Although this conditioning dose was
only about i/3rd of the acute LD50,
a significant amount of the injury was
not repaired by one week as the LD50
was still below that of the controls.

By 16 days, the LD50 was 180% of con-
trols indicating that a dramatic
radloresistance had been induced. The

data for thls study are included in
Table III while Figure 9 contains a
curve pertaining to this study. Un-
fortunately it was not possible to

conduct studies at later time periods
due to the closure of the laboratory.
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TABLE II

RADIOSENSITIVITY (LD50) OF SHEEP AND SWINE AT VARIOUS TIMES AFTER A SUBLETHAL ACUTE EXPOSURE

SINGLE LD50 AT VARIOUS TIMES (DAYS) AFTER INITIAL EXPOSURE
SPECIES DOSE INITIAL

LD50 DOSE 0 3 7 11 16 20 24 30 45 75

SWINE a 39g 265 b 154 282 306 - - B54 - - - c

SHEEP 252 177 75 86 111 275 324 207 179 193 218

SHEEP 316 100 216 256 567 .....

Al1 exposures in Roentgens midline air dose. Radiation source - 1Mvp X-ray
Dose rates used: Sheep - 450 R/hour; Swine - 540-600 R/hour

a Swine study conducted by Nachtwey (8)
b 240 R used for day 3 study
c LDSO after 6] days was approximately 700R_ LDSO after 107 days was greater than 400 R

based upon 0/9 mortality from challenge with 399 R,
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TABLE I I I

ACUTE LDSO OF SHEEP AFTER A SUBLETHAL CHRONIC RADIATION EXPOSURE

DOSE
INITIAL RATE SINGLE DOSE

DOSE (R/HOUR) ACUTE LDS0

ACUTE LD50 AT VARIOUS TIMES (DAYS)
AFTER INITIAL EXPOSURE

0 4 7 15 27 30

305 5.9 260 86 118 157 361 - 163

165 5.9 237 133 - 218 5k6 210 -

165 1.85 237 162 - 342 225 -

2. Chronic Exposure Followed by Acute
Exposure:

In this study, groups of sheep were
conditioned by three different radia-
tion regimens, 165 and 305 R at 3.9
R/hour and 165 R at 1.85 R/hour. The

relative radiosensitivity with time

was determined using the acute single-
dose LD50 again as the baseline or

reference value. Immediately (zero-
time) and at various time intervals

following the chronic irradiation,

portions of the conditioned group were
exposed to graded acute exposures for
LD50 determinations. The data for

these studies are presented in Table
III, while Figure 9 illustrates the
time-related changes in radiosensltivity
.(LD50). The reference LD50 for the

305 R experiment was not the same as
that for the 165 R experiments due
to different dates, animal lots and a
slightly lower dose-rate employed for
the acute LD50 determinations. How-

ev_, th_ _wn Tn5n,_ are _* _*a÷_s*i

cally different at the 95% confidence
level.

The acute LDS0 at the end of the
165 R exposure at 1.85 R/hour was 162 R

or 68% of normal. Theoretically if
the two exposures were completely
additive, the LD50 would have been

72 R (237 minus 165). Thus 93 of the
165 R (56%) was repaired by the end
of the chronic exposure. The other
chronic studies also showed non-

additivity or repair of a significant
portion of the injury produced during
the chronic exposure. At the end of
the 165 R exposure at 3.9 R/hour,
104 R injury was present or 61 R (37%)

had been repaired.
The injury repaired during the 305 R

exposure amounted to 131 R. This was
a slightly higher percentage recovery
(43%) at 305 R than was found after

165 R. The trend toward higher re-
covery rates with larger doses, con-
tinued for doses of 400 and 495 R as

recovery rates of 50 and 52%,

628

respectively, where found (3). This
might indicate that a specific
recovery mechanism lags somewhat at the

beginning and gains impetus with the
greater exposure times required for
the larger doses.

A consistent pattern developed in

sheep allowed to rest for various
periods before being subjected to
acute exposures. All groups were
alike in that the change in radio-

sensitivity (LDS0) was somewhat slow
for several days and remained below
normal at least for the first week.

This slow change or recovery phase was
followed toward the end of the second

week or beginning of the third week
by a rapid transition into a dramatic

radioreslstant condition. The degree
radioresistance varied from 140 to

230 percent of normal. This radio-
resistance was quite transient, how-
ever, with all groups back to normal
or slightly on the radiosensitive side
by the 4th week.

decedents at the LD50 dose was cal-
culated by linear regression of the
MST of each group on the dose received

by it through the range of doses used
in any particular group. The calcula-
tion of MST by this method allows a

comparison of survival times normalized

to a common biological endpoint, the
LDS0.

The survival time in the recovery
experiments, appeared heavily influ-
enced by the time interval between the
sublethal conditioning exposure and

the challenge LD50. In Figures 9 - I0, the
derived mean survival time (MST) at the
LD50 dose is graphed as a function of
the time after conditioning. In all

cases the MST's for animals re-exposed
less than 20 days after conditioning
by either an acute or protracted

exposure, were considerably shorter
than that of the controls. When the

recovery period was greater than 20
days, the MST values were somewhat



longer than in controls and in most

cases significantly longer than was

seen when the recovery period was less

than 20 days. The gross pathology

and clinical symptomatology were not

different for the specific groups.

Since detailed physiological or cell

kinetic studies were not conducted,

one can only offer speculation to

explain the nature of such findings.

Death likely results from damage to

several different tissues although

that of the gastrointestinal tract

and hematopoletic system are considered

the most important in the midlethal

range. Each undoubtedly has its own

characteristic time course of injury

and recovery. The differences ob-

served in the survival time conceivably

could reflect an alteration in tissue

radiosensitivity, the capability of

the stem cell constituents to respond

to a second dose of radiation, or

perhaps even a change in the relative

contribution of various syndromes, e.g.,

gastrointestinal or hematopoietic, to

the lethal injury.

3. Acute Followed by a Chronic Exposure:

Animals in this study (12) were

acutely conditioned with 155 R cobalt-

60 gamma radiation at a rate of 510

R/hour and immediately exposed to pre-

determined graded doses at 3.85 R/hour.

The LD50 at 3.85 R/hour for the acutely

conditioned sheep was 171 R. Thus the

combined acute exposure plus the pro-

tracted LD50 was 326 R, compared to

the single-dose acute LD50 of 314 R.

Based upon previous studies, 45 - 50%

recovery occurs during chronic exposure

at 3.6 R/hour (3). Had a similar

recovery occurred in this situation,

the LD50 at 3.85 R/hour would have been

greater than 300 R, about double that

actually found. It can be inferred

that the acute exposure has suppressed

the recovery mechanisms that operate

in the protracted exposure.

DISCUSSION

Of the numerous factors that can modify

the dose-response relationship to space

radiation, two of the most important are

dose protraction and nonuniform dose dis-

tribution within the body. It is generally

conceded that the reduction in dose-

effectiveness observed in protracted expo-

sure is due to recovery mechanisms that act

to offset the injury as it is produced.

This paper has dealt with the total of the

recovery processes and has not attempted

to identify the specific mechanisms in-

volved, e.g., intracellular repair or

repopulatlon of vital stem cells.

The two methods of protracting an expo-

sure, i.e., by continuous exposure at

lowered dose-rates (chronic exposure) or

fractionating the exposure into two or

more doses, were compared in these large

animal experiments. It is quite apparent

TABLE IV

EFFECT OF ACUTE SUBLETHAL EXPOSURE ON DOSE RESPONSE
TO SUBSEQUENT CHRONIC EXPOSURE

Control LDS0 at 510 R/Hour 31k R

Condltlonlng Dose at 510 R/Hour 155 R

Difference 159 R

LD50 of Conditioned Animals at 3.85 R/Hour 171 R

Expected LD50 Based Upon 45-50_ Recovery
During Exposure at 3.85 R/Hour >300 R

Recovery Rate at 3.85 R/Hour After an
Acute Exposure 7t

CONCLUSION: Acute Exposure Has Suppressed Ability
To Recover During Low Dose-Rate Exposure

that the dose-response to both chronic

irradiation and fractionation varies gre_

between the sheep and swine. The ability

of swine to survive large doses of radia-

tion under protracted conditions was also

found by Brown et al (6), using daily

fractions of 50 or i00 R/day until death.

The exposure was at a moderate dose-rate,

about 30 R/hour; thus the actual exposure

times were about 1 1/2 - 3 hours per day.

In those studies swine demonstrated a

remarkable ability to outlive cattle and

burros. The mean accumulative lethal

doses at i00 R/hour averaged 3900 R for

swine compared to 3200 R for cattle and

2330 for the burro. The results at 50 R/hour

were even more striking. At that rate ,

the mean lethal dose for swine was over

i0,000 R compared to 2250 and 1510 R for

cattle and burros, respectively. Thus the

LDS0 of 3444 R found at NRDL under chronic

exposure at 4 R/hour (approximately i00

R/day) and the mean accumulative lethal

dose of 3900 R found at the University of

Tennessee at i00 R/day fractionated expo-

sures are quite comparable, especially if

one discounts a certain portion of the

3900 R as unnecessary or wasted radiation.

In contrast to the remarkable ability of

swine to survive at 50 R/day with over

half the animals alive after 200 days,

none of the sheep chronically exposed at

slightly less than 50 R/day survived past

60 days, with the median time of death 43

days. In effect the swine survived about

5 times as long. In going from an acute

exposure to 4 R/hour Continuous exposure,

the ratio of chronic LD50 to acute LD50

for sheep was about 2.5%. For swine, their

remarkable recovery ability again was

demonstrated as the ratio of chronic:acute

was nearly 9:1.

The rapid recovery and large and persis-

tent radloresistance of swine following

an acute sublethal exposure again differed

from the recovery of sheep. Sheep were
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slow to begin recovery and while they also
progressed into a resistant state by the

end of the second week_ it was quite
transient and by the 24th day was gone.
There are data from the University of
Tennessee laboratory that would tend to

support the persistent radioresistance of
swine. Shively et al (13) found the

LD50 for swine exposed 4 months previous

was 60% greater than the controls of the
earlier study.

It became apparent from the dose-rate

and recovery studies that swine were not
the preferred animal model for extrapo-
lation purposes. With this in mind the

great bulk of the large animal studies at
NRDL were conducted with sheep. Recovery
or relative radiosensitivlty patterns were
determined after exposures to radiation at

either acute or chronic exposure rates.
In addition the influence of size of the

exposure on subsequent recovery was
assessed.

We were a little surprised with the
consistency in recovery patterns of sheep
after both high and low levels of injury
produced at acute or chronic dose-rates.
In all cases the changes in radiosensltiv_y

(or recovery) consisted of a triphasic
pattern with an initial slow phase for
the first week in which no group had
returned to normal by the 7th day. This

was followed by an induced-radloresistance
toward the end of the second week. The

radioreslstance phase was transient, how-
ever, and the sheep had returned to a

slightly sensitive state during the third
week.

While neither the dose-r&te nor size of

the conditioning exposure changed the
basic pattern, there were differences in
the extent and temporal patterns of some
of the fluctuations. It would appear

that recovery after acute exposure is
slower than after chronic exposure. The
greatest radioresistance was induced by a

dose equivalent to 1/3 of the LD50, i.e.,
100 R at 450 R/hour and 165 R at 4 R/hour,

with LD50's 180 and 230% of the controls
at 15-16 days. It was financially

impossible to describe the curves at
more time points as one might desire. It

situation where an acute exposure precedes
a chronic exposure the doses are additive.
This conceivably could be of considerable

importance in assessing the effect of radia-
tion on space travelers. Under certain
conditions in which both acute and chronic

exposures are received the assigning of
0.5 as a relative injury factor for chronic
exposure, as suggested by the Space Radia-
tion Study Panel (1), may not be too appro-
priate. Due to the potential importance

of this point we feel this situation should
be explored further using additional large
animal species, such as the nonhuman primate

and dog.
Table V summarizes the differences that

we have observed in additivity of acute

and chronic exposures under the various
conditions as described in this paper.

TABLE V

DIFFERENCES IN ADDITIVITY OF ACUTE AND CHRONIC EXPOSURES OF SHEEP

1ST EXPOSURE 2ND EXPOSURE EFFECT INTERPRETATrON

ACUTE ACUTE ADDITIVE SLOW RECOVERY

(165 R at (0-ii dayl after No _edlete recovery during ist reek after

660 R/hour) let exposure) 8_ recovery at 7 days acute exposure

20_ recovery at ll aays

CNRONI C ACUTE NONoADDf TI VE FAST RECOVERY

(165 R st (immediately and 50% recovery dUring during c_c e_rpes_e,

3.9 R/ho_) T days a_er lat chronlc exposure; 90% Nearly complete ree_ery

exposure) recovery at T days within one _ek.

ACUTE CHRONIC ADDITIVE SLOW RECOVERY

(155 R at (exposure at 3.9 7% reeowry _urlng during ch_o_le exposure

510 2 ho_) R/ho_ i_edia_eZy chronic e:,cpos_e vhich is preceded by

after acute exposure) acute exposure

is probable that the 15-16 days do not space exposure will be relatively non-
represent the maximum overshot or resis- uniform due to variations in shielding
tance stage since no testing was done after within the space craft, and the unldirec-
the chronic exposures in the period of 16- tional aspect of solar and nuclear reactor
27 days. In fact the 20th day was the
most resistant time after the 177R acute
exposure. One might speculate that an

optimum dose exists for stimulating
marrow cell proliferation which likely
accounts for the resistance condition.

If the dose is too great, the stock of
progenitor cells may be reduced to a
level which takes time to repopulate with

minimal capability to overshoot. If the
dose is too small, the stimulus for
repopulation may not be as dynamic.

A significant and unexpected finding was

the influence of an acute exposure to
negate the usual recovery that tak_place
during chronic exposure. In such a

Nonuniform distribution to the body can

also be a significant modifier of the dose-
response relationship. It is probable that

radiations. Due to body size and thus self-
shielding, nonuniform exposure of man and

large animals is an important consideration.
The observed ratio of midline tissue dose

(MLT) to a midline air dose (MLA) is highly
dependent upon the size of the animal. The
following values for Uobalt-60 or x-irradi-
ation (250-1000 kvp) were presented in a
recent survey (14):.82 - .86 for dogs, .6 -
.68 for swine, .58 - .65 for sheep, and
.40 - .50 for cattle and burros. A factor
of .65 is used by Lushbaugh, et al (15) to

convert exposure dose to an epigastric tad
dose for man.
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With a large inhomogeneity of dose dlstri- indexing radlosensitivity response to

bution, one would expect that the unilateral changes in intensity by relating the
exposure might be considerably less effective LD50 to the reciprocal cube root of the
than a bilateral exposure if the damage to dose-rate, a slope constant for normal
bone marrow is the critical determinant man was found to be quite close to that
for survival. The gammo and X-ray unilateral of sheep (19). Bateman's analysis of
LD50's for larger animals are generally mice data in the literature and these

20-30% greater than bilateral LD50's while sheep and swine data gave results of
the dog irradiated dorsally has been reported 0.65 for sheep, 0.95 for mice and 1.6 for
to have an LD50 approximately 50-60% higher
than with bilateral irradiation (14). Bond

and Robinson (16) concluded that the main
factor in the decreased effectiveness of

nonuniform (unilateral) exposure versus

uniform (bilateral) exposure, is the rela-
tively large fraction of stem cells sur-
viving in areas of bone marrow receiving
the lowest dose.

It would appear that shielding of only a
minute but select portion of the bone

swine. Thus, of all species analyzed by
that method sheep would appear the closest
to man. In addition, Lushbaugh found that
fractionated, daily, acute exposures over

an 8 day period had a greater effect than
the same dose given chronic (continuously)
over the same exposure period.

Unfortunately, data on the nonhuman
primate, especially the rhesus monkey, are
conflicting as to the recovery rate and
their response to chronic exposure. We

marrow can have a dramatic protective effect, have more confidence in using the data
In a study by Cole (17) at NRDL, lead
shielding, completely surrounding a single
elbow of the dog for a length of 4 - 6

inches, resulted in 50% survival at i000 R
a dose 3 X greater than the whole-body
LD50/30. Those animals that did die, suc-
cumbed between 6 - 8 days from what

appeared to be gastrointestinal involvement.
A relatively complete shielding of a single
elbow was more effective than the use of a

larger total amount of lead placed over all

four elbows. This apparent paradox was

explained on the basis of the exponential
nature of cell-killing by irradiation.

The results described from these large
animal studies have demonstrated that

dose protraction and spatial distribution
aI_e certainly important modifying factors
in determining the response to a given
radiation exposure. It is quite evident
that there are major differences between

swine and sheep in their response to
chronic exposure, pattern of recovery

and relative rediosensitivity following a
sublethal exposure. In attempting to
extrapolate animal results to assess

effects in man, selection of the appro-
priate animal model becomes of consider-
able importance. Based upon the results

obtained in radiotherapy, we propose that
sheep are a better model for man than is

swine or small laboratory rodents. While

the rhesus monkey would appear to be the
choice for performance studies, he suffers
greatly from being small and not as compar-
able in depth-dose and dose distribution

to specific organs. In addition the

rhesus monkey has an acute LD50 in the
range of 500 - 600 R which is greater
than man's.

The studies of Lushbaugh, et al (15)
demonstrate that man's response to both
acute and chronic radiation is reasonably

close to that found with the sheep. The
acute LD50 for radiotherapy patients is
about 250 rads. It appears that man is
slow to repair radiation-induced hemato-

poietic damage and remains relatively
radiosensitive as the dose-rate is de-

creased. Using Bateman's (18) method of

obtained with sheep for assessing hema-

topoietic and lethality effects in man than
that obtained with swine or rodents.

SUMMARY

i. While sheep and swine are basically
similar in response to acute radiation,
their sensitivity to chronic irradiation

is markedly different. Sheep remain rela-
tively sensitive as the radiation expo-

sure is protracted while swine are more

resistant and capable of surviving ex-

tremely large doses of chronic irradiation.
2. This response to chronic irradiation

correlated well with changes in radio-
sensitivity and recovery following an

acute, sublethal exposure. Swine recover
r_markably fast and develop a large and
persistant radioresistance. The change
in radiosensitivity of sheep after either
acute or chronic sublethal exposure is

basically the same, consisting of a tri-
phasic pattern of an initial slow recovery,
transient radioresistance and regression
into a long-lasting period of relative

radiosensltivity.
3. The overall effect of receiving both
acute and chronic exposures within a short

period of time may depend upon the se-
quence of the exposures. At least with
sheep an acute exposure appears to reduce
the recovery potential for chronic expo-
sures that follow within a short time. In

such a situation the individual response
to both acute and low chronic exposures

are additive. In contrast the response to
a chronic exposure before an acute exposure
is not additive with significant recovery

occurring during the chronic exposure.
4. The spatial or dose distribution within

the body of a large animal is a significant
factor. Unilateral or partial-body
exposure is considerably less effective
for a given dose than is a bilateral or

total body exposure. A simple lead-cuff
around a small but select portion of the
bone marrow can result in significant pro-
tection.
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